О математической экономике как области математики и о некоторых ее связях

История этой метрики и всего, что относится к ней -- прекрасный пример того, как прикладная (в данном случае -- транспортная) задача инициирует введение исключительно полезного чисто математического понятия.

Г) Связи с вариационным исчисленим и множителями Лагранжа.

Линейное и выпуклое программирование естественно обобщало теорию множителей Лагранжа на нерегулярные задачи (задачи на многогранных областях или, как бы мы сказали сейчас, на многообразиях с углами). То, что разрешающие множители были обобщением множителей Лагранжа, Л.В. отмечал с самого начала. Неклассические множители появлялись и в других областях, в первую очередь в теории оптимального управления в школе Понтрягина. Эта теория также обобщала условные вариационные задачи на случай нерегулярных ограничений, и потому ее следует сравнивать с задачами (вообще говоря, невыпуклого, но в существенных случаях - выпуклого) бесконечномерного программирования. Эта связь прояснилась не сразу.

Нужно сказать, что в эстетическом отношении теория Понтрягина уступала теории Л.В., хотя первая по сути более сложна (только из-за изначальной бесконечномерности задач). О связи линейного и выпуклого программирования с оптимальным управлением писалось немало. Однако по ряду причин эта связь не была доведена до достаточно глубокого уровня.

В первую очередь это связано с недостаточно инвариантной формой, в которой рассматриваются обычно задачи оптимального управления. Промежуточное положение между классическим вариационным исчислением и оптимальным управлением, ближе к геометрии и теории алгебр Ли, занимают неголономные задачи. В них также наличествует неклассичность ограничений, как в выпуклом программировании и оптимальном управлении, но неклассичность другого (гладкого) типа.

Я занялся ими в середине 60-х годов, когда стал обдумывать популярные тогда работы по инвариантным формулировкам механики (Арнольд, Годбийон, Марсден и др.). Увидев в неголономной механике -- падчерице классической механики -- нетривиальную оптимизационную задачу, я понял, как ее поставить в современной форме. В те годы у нас был молодежный образовательный семинар в ЛОМИ -- по дифференциальной геометрии, теории представлений, группам Ли и всему остальному (Л.Д.Фаддеев, Б.Б.Венков, я и др.).

Как-то раз случайно выяснилось, что и Л.Д. тоже обдумывал неголономную механику, и мы решили вместе разобраться во всем полностью. Мы написали сначала краткую, в ДАН, а потом и большую статью об инвариантной форме лагранжевой и, в частности, неголономной механики. Эти работы обильно цитируются до сих пор, в них дан словарь соответствия между терминами дифференциальной геометрии и понятиями классической механики. Сейчас эта тематика стала модной, она является замечательным промежуточным звеном между классическим и неклассическим вариационным исчислением. В нем множители Лагранжа предстают в еще одной новой форме - как переменные, отвечающие ограничениям и следствиям (скобкам Ли) всех порядков. Здесь также невозможно не вспомнить о разрешающих множителях Л.В.

Д) Линейные модели и марковские процессы.

Поскольку Л.В. много занимался в 60-х гг. экономическими моделями, не обязательно связанными с оптимизацией, нельзя хотя бы мельком не упомянуть связи теории моделей экономической динамики (Дж. фон Нейман, В.Леонтьев, Л.В. и др.) с динамическими системами. Я хочу подчеркнуть здесь только одну недостаточно изученную связь, а именно, что эти линейные экономические модели напрямую связаны с особым типом марковских процессов, в которых особую роль играет понятие положительности в множестве состояний. Теоремы магистрального типа и марковские процессы принятия решений самым непосредственным образом связаны с этой проблематикой. Сюда же относятся теории многозначных отображений, проблемы непрерывного выбора и т.д.

Перейти на страницу: 1 2 3 4 5

Другое по теме

Международные космические организации
Тема моей работы Международные космические организации. Целью данной работы является дать общую характеристику комических организаций, раскрыть принципы деятельности международных космических организаций показать актуальность данной темы, показать организационную структуру, задачи, вопросы членства в международных орга ...

Метод стандартной добавки и метод Грана.
Перед тем, как излагать индивидуальные особенности той или иной разновидности метода добавок, опишем в нескольких словах процедуру анализа. Процедура состоит в том, что в анализируемую пробу делается добавка раствора, содержащего тот же анализируемый ион. Например, для определения содержания ионов натрия делаются добавки станд ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru