Новое открытие в астрономии подтверждает существование антигравитирующего вакуума

На базе Общей теории относительности и данных наблюдательной астрономии астрофизиками разработана теория эволюции звезд. Согласно этой теории сверхновые звезды возникают на заключительном этапе эволюции звезд, масса которых превышает примерно в восемь раз массу Солнца. Впрочем, рассматриваются варианты, когда сверхновой может стать белый карлик, образовавшийся в конце жизненного пути звезды с массой того же порядка, что и у Солнца, но при условии, что он входит в систему кратных звезд. Эволюционный путь предшественника сверхновой представляется в следующем виде. В недрах таких звезд термоядерные реакции продолжаются вплоть до появления железа, элемента, на котором завершаются реакции синтеза тяжелых элементов, протекающие с выделением энергии. В центре звезды образуется железоникелевое ядро. Если его масса превышает так называемое критическое значение Чандрасекара, равное 1,4 массы Солнца, то ядро сжимается (коллапсирует), его температура растет и по достижению ста миллиардов градусов железо распадается на протоны, нейтроны и некоторое количество ядер гелия. Протоны соединяются с электронами, превращаются в нейтроны и возникает компактное нейтронное ядро. Плотность достигает 1014 г/см3, радиус ~ 20 км. Ядро почти несжимаемое, но гравитация стремится сжать его, возникает мощная отдача, порождающая ударную волну со скоростью порядка десятков тысяч км/с. Ударная волна и инициируемые ею газодинамические процессы ведут к взрывообразному сбросу оболочки, в результате остаются нейтронная звезда и разлетающаяся оболочка. В момент максимального блеска сверхновой ее светимость в десять миллиардов раз превышает светимость Солнца. Светимостью звезды называют энергию, которую она излучает во всем диапазоне электромагнитных длин волн за одну секунду. Общая же выделенная энергия за все время существования сверхновой достигает значений порядка 1050 - 1053 эрг (для выделения такой энергии Солнцу потребуется более миллиарда лет). 1% этой энергии уносится электромагнитными излучениями, остальную энергию выносят нейтрино.

По спектрам изучения СН их разделяют на две группы. В первую входят СН типа 1, именно звезды такого типа изучались обоими группами исследователей, упоминавшихся в самом начале. Кривые изменения светимости звезд этой группы со временем ("кривые блеска") и их спектры очень похожи друг на друга

Спектральные наблюдения СН позволяют надежно определить расстояние до галактики, в которой вспыхнула эта звезда. Производится такое определение по следующей схеме:

из спектральных наблюдений определяется скорость расширения оболочки СН;

отсюда непосредственно определяется радиус фотосферы Rф и ее температура Т;

абсолютная светимость СН находится по формуле: L = 4Rф2T4, а по известной светимости определяется ее абсолютная звездная величина М, т.е. та величина, которую имела бы интересующая нас звезда, если бы расстояние до нее равнялось стандартному значению 10 пс;

непосредственно измеряется визуальная звездная величина m>, она связана с абсолютной величиной М соотношением: М = m + 5 – 5lgr1, где r1 - расстояние от нас до звезды в мегапарсеках. Отсюда определяется это расстояние. Визуальная звездная величина m –это мера величины светового потока звезды.

Итак, группа астрофизиков под руководством Перлмуттера и другая группа под руководством Шмидта изучали сверхновые звезды типа 1, вспыхивающие в разных галактиках, в том числе и удаленных от нас на миллиарды световых лет. В частности, определяли расстояние до этих галактик описанным методом. Но одновременно они определяли расстояние до галактики и другим методом, а именно, по так называемому красному смещению в спектрах этих галактик. Термин «красное смещение» используется для образного обозначения оптического эффекта Доплера.

Все атомы, находящиеся в сильно нагретой среде (например, в атмосферах звезд), излучают свет. Если с помощью спектрографа разложить этот свет по длинам волн, то как правило его спектр предстает в виде отдельных разноцветных линий, разделенных темными промежутками. Со стороны коротких длин волн расположены фиолетовые, синие, голубые цвета, а со стороны длинных волн – красные цвета. При этом каждый элемент характеризуется своим набором таких линий, их расположение присуще только этому элементу. Но если светящийся объект (звезда, галактика) удаляется от нас, то весь спектр линий как одно целое сдвигается в область более длинных волн, к его красному участку, и сдвиг тем сильнее, чем выше скорость удаляющегося объекта. Это и есть оптический эффект Доплера. Условно говорят, что линии «краснеют», отсюда термин «красное смещение». Таким образом, скорость удаления можно определить по величине красного смещения, что позволяет установить и расстояние до светящегося объекта по закону Хаббла: v = H•R. Следовательно, определив красное смещение галактики, в которой вспыхнула Сверхновая класса 1, можно осуществить еще одно, независимое, определение расстояния до нее.

Перейти на страницу: 1 2 3 4

Другое по теме

Химическая и нефтехимическая промышленность Российской Федерации
Нефтяная промышленность - это крупный комплекс, который живет и развивается по своим закономерностям. Нефть – сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки мотор ...

Астероиды вблизи Земли
Возможно, нам, жителям Земли, наиболее важно знать астероиды, орбиты которых близко подходят к орбите нашей планеты. Обычно выделяют три семейства сближающихся с Землёй астероидов. Они названы по именам типичных представителей - малых планет: 1221 Амур, 1862 Аполлон, 2962 Атон. К семейству Амура относятся астероиды, ор ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru