Новое открытие в астрономии подтверждает существование антигравитирующего вакуума

В 1998 году астрономами сделано открытие, которое в случае его окончательного подтверждения будет иметь далеко идущие последствия. Прежде всего это коснется современных космологических представлений. В частности, сделанное открытие имеет прямое отношение к проблеме антигравитирующего вакуума. Суть открытия я изложу несколько позже, а начать необходимо с выяснения того, что собой представляет проблема антигравитирующего вакуума.

Со времен Ньютона образованные люди знают, что в нашем мире между любыми телами, обладающими массами, действуют силы взаимного притяжения. Большинство из этих образованных людей так же твердо знают, что антигравитация (левитация) по определению может существовать только в научно-фантастических произведениях.

Но вот в 1917 году Альберт Эйнштейн предпринял попытку приложить свою только что созданную современную теорию гравитации, названную Общей теорией относительности (ОТО), ко Вселенной, которая в то время считалась стационарной и бесконечной в пространстве и во времени. При этом необходимо было решить проблему совмещения стационарности с тяготением, поскольку звезды непременно должны взаимно притягиваться и удержать их на исходных местах не представлялось возможным. Эйнштейн выдвинул смелую, но логически единственно возможную гипотезу: во Вселенной действует фактор, точно уравновешивающий силы взаимного притяжения всех тел. Иными словами, допускалось существование антигравитации, действие которой проявляется в масштабах Вселенной, но это действие остается незаметным в масштабах Земли, Солнечной системы и даже Галактики. Такой фактор создается вездесущим вакуумом, получающим благодаря таким своим свойствам название антигравитирующего вакуума.

С учетом предполагаемых сил гравитационного отталкивания ускорение а, сообщаемое объекту телами с эквивалентной массой М, выражается двучленным соотношением:

а = - GM/R2 + Lc2R/3

где G - постоянная тяготения, R - расстояние между гравитирующими объектами,с - скорость света, L - космологическая постоянная, учитывающая интенсивность антигравитирующего отталкивания. Первый член соотношения определяет ускорение объекта под воздействием тяготения, а второй – противоположно направленное ускорение отталкивания. В предположении, что силы притяжения и силы отталкивания в объеме всей Вселенной взаимно компенсируют друг друга, космологическая постоянная должна равняться: L = 10-56 см-2.

Это очень маленькая величина сравнительно с силами тяготения, и ее действие оказывается заметным только при очень больших значениях расстояния R. В лабораторных экспериментах обнаружить такую величину практически невозможно.

Дальнейшая история нововведения развивалась так. В 1922 году Александр Фридман публикует полученное им нестационарное решение уравнений ОТО для Вселенной. Оказывается Вселенная не может пребывать в стационарном состоянии, она или расширяется, или сжимается. Для такого решения гипотеза об антигравитирующем отталкивании необязательна, космологическая постоянная может равняться нулю. Но в принципе она может иметь какое-то положительное значение при условии, что силы тяготения в любом достаточно большом локальном объеме преобладают над силами отталкивания. А в 1929 году Хаббл обобщает многочисленные астрономические наблюдательные данные, которые подтверждают расширение Вселенной, что окончательно привело к признанию нестационарного решения уравнений ОТО. Хаббл установил эмпирический закон, названный его именем, согласно которому скорость удаления галактик от наблюдателя пропорциональна их расстоянию от него R: v = H•R. Коэффициент пропорциональности Н назван постоянной Хаббла, его определение производится по наблюдательным данным.

В свете новых представлений казалось бы можно обойтись без гипотезы об антигравитирующем вакууме. Но эта идея не была похоронена. Так, в тридцатые годы и в последующие времена теоретики продолжали разрабатывать модели Вселенной, в которых космологическая постоянная была больше нуля. Для нашей темы интересно сопоставить модель Вселенной при L = 0 (условно назовем ее моделью Фридмана) и модель при L > 0 (модель Леметра). Сравнив следствия, вытекающие из каждой модели, по обнаруживаемым различиям можно установить, какие астрономические наблюдательные данные позволяют вынести заключение о справедливости одной из этих двух моделей. Результаты сравнения можно сформулировать так.

Перейти на страницу: 1 2 3 4

Другое по теме

Рефракторы XIX столетия
Потребовалось около века, чтобы убедиться в ошибочности утверждения Ньютона о том, что создать ахроматический объектив невозможно. В 1729 г. был изготовлен объектив из двух линз разного стекла, позволивший уменьшить хроматическую аберрацию. А в 1747 г. великий математик Леонард Эйлер рассчитал объектив, состоящий из двух ст ...

Железобетонные конструкции
Техническое задание Разработать проект плоского железобетонного ребристого перекрытия по заданному плану перекрываемого помещения. Проект перекрытия составить в двух вариантах: в монолитном и сборном железобетоне. Состав проекта По варианту в монолитном железобетоне: схему балочной клетки, расчет плиты, ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru