О нелинейной динамике

Успехи механики в XVII-XIX веках были столь впечатляющими, что стало казаться возможным представить себе всю Вселенную как гигантскую динамическую систему. Эту позицию четко сформулировал Лаплас: «Состояние системы природы в настоящем есть, очевидно, следствие того, каким оно было в предыдущий момент, и, если мы представим себе разум, который в данное мгновение постиг все связи между объектами Вселенной, то он сможет установить соответствующие положения, движения и общие воздействия этик объектов в любое время в прошлом или будущем» (1776 г.).Эта доктрина, получившая название лапласовского детерминизма, выразила в концентрированном виде идеал научного познания, каким он виделся в те времена. Понадобился длительный путь развития науки и научного мировоззрения (термодинамика и статистическая физика, квантовая механика), чтобы убедиться в несостоятельности такого представления о мире. И все же лапласовский детерминизм совсем недавно казался незыблемым для простых моделей типа осциллятора.

Конец XX века привнес ощущение научной революции, сравнимой с возникновением собственно научного метода в эпоху Галилея. В центре внимания исследователей вновь оказались самые фундаментальные свойства окружающего мира: эволюция систем во времени и геометрия природы. Однако характер интереса к этим понятиям изменился. Картина мира стала переосмысляться, наполняясь новыми образами (катастрофы, бифуркации, хаос, фракталы). Весьма характерны в этом смысле слова нобелевского лауреата И.Пригожина: "Если в физике и химии где-то и существует простота, то заведомо не в микроскопических моделях. Она скорее кроется в идеализированных макроскопических представлениях, например, о простых движениях типа гармонического осциллятора". Модели в виде осцилляторов, различных одномерных отображений и др. оказались во многом центральными объектами интенсивно развивающихся синтетических научных дисциплин, к которым относятся теория колебаний, теория бифуркаций, теория динамических систем, теория динамического хаоса и др.

В 1963 г. американский метеоролог Э. Лоренц опубликовал статью "Детерминированное непериодическое течение", в которой обсуждались результаты численного исследования достаточной простой системы дифференциальных уравнений, моделирующих динамику жидкости при конвекциив подогреваемом снизу слое. Лоренц подверг полученные результаты тщательному и глубокому обсуждению, акцентируя внимание на связь между сложным поведением системы и присущей ей неустойчивости. Позднее это свойство пропагандировалось им как "эффект бабочки" (butterfly effect): в приложении к метеорологии взмах крыльев бабочки может через достаточно время повлечь существенное изменение погоды.Таким образом оказывается невозможно предсказать поведение даже простой системы.

К настоящему времени соответствующие представления развиты настолько глубоко, что можно говоритьо теории динамического хаоса – науке о "непредсказуемого" поведения простых динамических систем.

Другое по теме

Ионометрия. Поиск неисправностей
Неисправность прибора При выходе из строя прибора химик-аналитик практически никогда не может произвести ремонт своими силами, так как для этого нужен специалист по электронике. Однако опыт показывает, что произвести тестирование иономера можно самим, существенно экономя рабочее время. Самый надежный способ оцен ...

Эффект Оже. Оже–спектроскопия
Для исследования твердых тел используется множество различных методов, позволяющих получать исчерпывающую информацию о химическом составе, кристаллической структуре, распределении примесей и многих других свойствах, представляющих как чисто научный, так и практический интерес. В настоящее время особое значение придаетс ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru