Законы непредсказуемости

Ответ: да, такие правила существуют – это уравнения эволюции или динамические уравнения (в частности, ньютоновы законы движения). И все же поведение многих физических объектов, описываемых такими уравнениями, – динамических систем – через какое-то время становится совершенно непредсказуемым. Например, атмосфера – типичная динамическая система, ее эволюция жестко задана известными уравнениями, однако предвидеть ее состояние через месяц – то есть сделать безошибочный прогноз погоды на месяц вперед – практически невозможно, какой бы мощный суперкомпьютер ни был в нашем распоряжении. Прогноз погоды может быть только вероятностным, а парадоксальную, порождаемую известными динамическими уравнениями – жестким алгоритмом поведения, – случайность с недавних пор стали называть детерминированным хаосом.

Вообще сегодня в физике рассматривается случайность двух типов (речь сейчас не идет о квантовой неопределенности).

Первый тип случайности возникает тогда, когда частиц, степеней свободы, событий или предметов так много, что во всем этом совершенно невозможно разобраться. Например, газ в литровой банке содержит примерно 1022 молекул, и ни одной ЭВМ не под силу рассчитать траектории такого числа сталкивающихся друг с другом частиц. Но даже если бы с помощью какого-нибудь фантастического суперкомпьютера и удалось бы проинтегрировать все «зацепляющиеся» уравнения движения в общем виде, то совершенно невозможно было бы подставить в решение уравнений конкретные начальные условия – координаты и скорости всех 1022 молекул в некоторый выбранный нами момент, хотя бы из-за необходимых для этого времени и бумаги. Именно поэтому для описания «больших» – макроскопических – систем физики используют усредненные статистические или термодинамические характеристики, такие, как температура, давление, свободная энергия, и некоторые другие.

Другой тип случайности сегодня ассоциируется с именем выдающегося французского математика Анри Пуанкаре, который, по-видимому, был первым, кто предвосхитил современный взгляд на хаос, обратив внимание на чрезвычайную «чуткость» неустойчивых динамических систем – сколь угодно малые неопределенности в их состоянии усиливаются со временем, и предсказания будущего становятся невозможными.

Статистические системы преимущественно основаны на классической схеме теории вероятностей, и чтобы найти интересующие нас вероятности, нужно проделать простые комбинаторные вычисления. Скажем, вероятность падения симметричной монеты какой-то одной стороной кверху равно 1/2 (просто из соображений симметрии). Вероятность рождения мальчика, как показывает опыт, несколько больше 1/2 и по каким-то загадочным причинам способна претерпевать внезапные скачки, сопряженные с глобальными изменениями условий жизни, например, после войн и эпидемий. А вообще пол человека – лишь один из многих генетических признаков, распределение вероятностей которых изучает математическая генетика. Вероятность угадать сколько-нибудь видов спорта при игре в «Спортлото» дается так называемым гипергеометрическим распределением (по существу, отношением чисел сочетаний разных номеров на карточке). Например, вероятность угадать все шесть видов спорта равна (С649)–1 ≈ 7,15·10–8. Математический аппарат молекулярной физики несколько сложнее, он основан на изучении так называемых кинетических уравнений. Интересно, что в 60-х годах кинетическая теория была с успехом применена к описанию коллективного движения автомобилей на автострадах, и сделал эту попытку бельгийский ученый русского происхождения, лауреат Нобелевской премии ИльяПригожин. В классической схеме случайного поведения существует еще одна группа задач – задачи, связанные с описанием броуновского движения и диффузии, их обычно объединяют термином «случайное блуждание». В 1827 году английский ботаник Роберт Броун, наблюдая в микроскоп за плавающей в воде цветочной пыльцой, обнаружил поразительное явление: частички пыльцы вели себя как живые. Они непрестанно двигались, описывая причудливые ломаные траектории (напоминающие непредсказуемое метание летающей под потолком мухи). Беспорядочное движение частичек ни на секунду не прекращалось, и тогда у Броуна возникла мысль: может быть, пыльца – ведь это органическая материя – состоит из мельчайших живых существ, некоторых «первичных» организмов? Но это предположение Броуна очень скоро пришлось отвергнуть: и неорганические микроскопические частички вели себя в жидкости столь же активно, причем их движение происходило тем энергичнее, чем меньше были частицы.

Перейти на страницу: 1 2 3 4

Другое по теме

История космических исследований
Освоение космоса, космические исследования относятся к одному из основных направлений научно-технической революции. Рассмотрение этого направления в технико-экономическом аспекте представит определенный интерес для специалистов, разрабатывающих международные программы сотрудничества в области экономики, науки и техники ...

История исследований космоса
По всей вероятности, первыми внеземными объектами, которые привлекли внимание человека еще в глубокой древности, были Солнце и Луна. Вопреки известной шутке о том, что Луна полезнее Солнца потому, что светит ночью, а днем и без того светло, первостепенная роль Солнца была отмечена людьми еще в первобытную эпоху, и это ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru