Основные положения Специальной теории относительности

Пространство Минковского. Широко используемая в классической физике векторная форма записи законов природы объясняется не только желанием сэкономить место, но и является математическим отражением факта инвариантности законов природы относительно поворотов выбранной системы координат в пространстве, что, разумеется, требует инвариантной формы их математической записи. Действительно, в изображенных на рис. 12_1 повернутых друг относительно друга системах координат проекции всех векторов на одноименные оси различны, но равенство

(3)

справедливо в каждой из систем, т.е. остается инвариантным относительно пространственных вращений. Помимо равенств между векторами инвариантами являются скалярные произведения векторов и вычисляемые с их помощью квадраты длин:

(4) .

Координаты же вектора в новой системе отсчета могут быть рассчитаны через координаты в старой с помощью тригонометрии:

(5) .

Последовательное релятивистское описание явлений природы должно быть инвариантным относительно переходов из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Как отмечалось, при таких переходах перестает быть справедливым классический векторный закон сложения скоростей, длина векторов изменяется, а в закон преобразований их компонент (преобразования Лоренца) помимо пространственных переменных входит время:

(6) .

В создавшейся ситуации естественным выходом был переход от несвязанных друг с другом пространственного (трехмерного) и временного (одномерного) описаний явлений к единому описанию событий в четырехмерном пространстве-времени (пространстве Минковского) при помощи четырехвекторов, три компоненты которых совпадают с обыконвенными простарнственными, а последняя дает временное описание. В этом пространстве переход в движущуюся систему отсчета рассматриваентся как обобщение понятия поворота, аналогом трехмерных траекторий являются четырехмерные кривые - мировые линии, инвариантами являются скалярные произведения четырехвекторо, определяемые соотношением:

(7) ,

и интервалы, являющиеся аналогами длин векторов:

(8)

(следствие преобразований Лоренца).

отличающимся знаками от обычного “трехмерного” определения. В связи с этим геометрическое свойства псевдоевклидового пространства Минковского существенно отличаются от привычных свойств евклидового пространства .

Световой конус.Мировыми линиями свтовых лучей, выходящих из одной точки пространства Минковского (т.е. одновременно испущенных из одной точки трехмероного пространства) являются прямые, составляющие с осью ct одинаковый угол и образующие световой конус (рис. 12_2) Мировые линии всех тел могут лежать лишь внутри светового конуса, поскольку допустимые скорости движения не могут превосходить с. Лежащие в верхней части светового конуса точки пространства Минковского образуют абсолютное будущее (множество событий, на которые в принципе можно повлиять, находясь в вершине конуса), нижняя часть светового конуса соответствует абсолютному прошлому (множество событий, которые в могли повлиять на происходящее в вершине конуса). Вне светового конуса лежат абсолютно недоступные событмя (т.е. невлияющие и независимые от происходящего в вершине конуса).

Перейти на страницу: 1 2 3 4

Другое по теме

Нейроподобный элемент (нейрон)
На нейроподобный элемент поступает набор входных сигналов x1, x2, ..., xM (или входной вектор X), представляющий собой выходные сигналы других нейроподобных элементов. Каждый входной сигнал умножается на соответствующий вес связи w1, w2, ..., wM - аналог эффективности синапса. Вес связи является скалярной величиной, пол ...

Законы движения небесных тел и строение Солнечной системы
Двумя наиболее значительными успехами классического естествознания, основанного на механике Ньютона, были практически исчерпывающее описание наблюдаемого движения небесных тел и объяснение известных из эксперимента законов идеального газа. ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru