Концептуальная модель развития

Наиболее важный этап процесса разработки модели состоит в выборе структуры модели системы. Вряд ли можно считать целесообразным начинать исследования сразу с подробной математической модели еще до того, как выдвинуты основные гипотезы и достигнуто более глубокое понимание механизма работы системы.

Разработка модели системы начинается с наименее структуризованных и наиболее широко применяемых понятий, и на их основе аксиоматическим образом развивается дальнейшая математическая модель.

Методические аспекты изучения развития сложных систем неотрывны от самой теории развития. Задача заключается в том, чтобы для определенного класса систем, а именно открытых динамических самоорганизующихся, конкретизировать общие закономерности развития, формализовать их, построить модель развития.

Идея развития неразрывно связана с концепцией иерархии структурных уровней природы, выступающих как ступени, этапы развития природных объектов. Это положение едино для систем различной природы. Согласно схеме иерархического ступенчатого строения материи, отдельные объекты определенного уровня материи, вступая в специфические взаимодействия, служат исходными образованиями в развитии принципиально новых типов объектов с иными свойствами и формами взаимодействия. При этом основным исходным положением является наличие преемственности. Если нет преемственности, то мы будем наблюдать не процесс развития, а лишь хаотические смены круговоротов. Новое всегда рождается в недрах старого.

Развитие неживой и живой природы рассматривается как необратимое изменение структуры объектов природы. Важная проблема в теории развития - выявление объективных критериев прогресса, которые определяют переход системы от одного уровня развития к другому, более высокому.

Одной из естественнонаучных конкретизаций принципа развития является принцип возрастания энтропии, отражающий образование новых материальных форм и структурных уровней. Уравнение Больцмана для энтропии часто рассматривают как математическое выражение закона эволюции. Однако эта математическая модель процесса развития обладает следующими серьезными недостатками. Она показывает лишь направление эволюции и не учитывает того факта, что развивающиеся системы - это системы открытые, которые могут уменьшать свою энтропию за счет увеличения энтропии во внешней среде.

С позиций неравновесной термодинамики развитие трактуется как последовательность переходов иерархии структур возрастающей сложности. Переход на новый уровень развития идет от беспорядка к порядку через неустойчивость. В неравновесных ситуациях появление порядка возможно только при наличии внешних потоков (вещественно-энергетических или информационных), удерживающих систему далеко от равновесия. При отсутствии этих потоков (изоляции системы) в подобных ситуациях развиваются диссипативные разрушения структуры, рассеяния (диссипация) энергии или информации, в результате чего системы деградируют к равновесному состоянию. Взаимодействие со средой создает потенциальные возможности для возникновения неустойчивых состояний и появления вслед за неустойчивостью новой, более упорядоченной структуры.

Возникающая в процессе развития неустойчивость создает возможность скачкообразного перехода системы в новое состояние. Скачок можно рассматривать как реакцию системы на возмущение с целью его компенсации, только система возвращается не в старое состояние, а переходит в новое, т.е. "развитие через неустойчивость" обеспечивает устойчивость на более высоком уровне. При этом сама устойчивость понимается не как устойчивость равновесных структур типа кристаллических образований, а как динамическая устойчивость открытых систем за счет самоорганизации, авторегуляции, осуществляемая для достаточно сложных систем в основном путем информационного обмена (В.Эбелинг).

Спокойный эволюционный этап развития характеризуется наличием соответствующих механизмов, стабилизирующих данное состояние системы и ликвидирующих любое отклонение от него (возвращающих систему к этому состоянию). С течением времени эти механизмы ослабляются из-за количественного роста соответствующих параметров среды или системы, в силу чего они уже не могут осуществлять стабилизацию системы. Наступает кризисное состояние. Новое вступает в противоречие со старым, и, как разрешение этого противоречия, происходит скачкообразный переход системы в новое устойчивое состояние.

Развитие - это прежде всего необратимое изменение. Поэтому слишком устойчивая, т.е. абсолютно устойчивая, система к развитию не способна, ибо она подавляет любые отклонения от своего гиперустойчивого состояния и при любой флуктуации возвращается в свое равновесное состояние. Для перехода в новое состояние система должна стать в какой-то момент неустойчивой. Но перманентная неустойчивость - это другая крайность, которая также вредна для системы, как гиперустойчивость, ибо она исключает "память" системы, адаптивное закрепление полезных для выживания в данной среде характеристик системы.

Перейти на страницу: 1 2 3

Другое по теме

В поисках системы мира. Первые астрономы и их системы
Звездное небо во все времена занимало воображение людей. Почему зажигаются звезды? Сколько их сияет в ночи? Далеко ли они от нас? Есть ли границы у звездной Вселенной? С глубокой древности человек задумывался над этими и многими другими вопросами, стремился понять, и осмыслить устройство того большого мира, в котором м ...

Знакомство с экстракционной хроматографией
Принцип экстракционной хроматографии несложен и заключается в том, что в качестве неподвижной фазы используется экстрагент, нанесенный на порошкообразный пористый материал. Этим материалом заполняется хроматографическая колонка, которая представляет собой стеклянную трубку с краном внизу. Жидкость (элюент) в колонку по ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru