Ньютонова революция в науке

Так математики и физики называют последнюю треть 17 века и первую четверть 18 века - то время, когда был создан современный математический анализ (исчисление производных и интегралов от любых гладких функций). Эту огромную работу проделала большая группа ученых из разных стран Европы. Но англичанин Исаак Ньютон занимает среди них особое место. Он был на редкость талантлив, ему во многом повезло, и он с блеском использовал это везение.

Будучи студентом, Ньютон прочел изданную в 1656 году книгу Джона Валлиса "Арифметика бесконечно малых". Ее автор свободно работал с интегралами, бесконечными рядами и бесконечными произведениями, не очень заботясь о корректности своих рассуждений. Вот типичный результат Валлиса:

2*4*4*6*6*8*8* .

П/4 = ----------------------

3*3*5*5*7*7*9* .

Валлис первый начал рассматривать интеграл не геометрически, а арифметически - как предел последовательности чисел. И в геометрии Валлис предпочитал алгебраические доказательства теорем (в стиле Декарта) наглядно-геометрическим рассуждениям Евклида. В 1660-е годы Валлис, будучи духовником короля Карла 2, сыграл важную роль в учреждениии Лондонского Королевского Общества - английской академии наук. Позднее он стал горячим пропагандистом математических открытий Ньютона.

Другой учитель Ньютона - Исаак Барроу - первый заметил, что вычисление площади под графиком функции и проведение касательной к графику функции - взаимно обратные операции. Но Барроу избегал алгебраических доказательств, а работал в стиле Евклида; поэтому его книги были мало понятны молодым читателям. Когда Барроу услышал от Ньютона новое изложение основ математического анализа ("метод флюент и флюксий"), он пришел в восторг и вскоре уступил своему ученику кафедру математики в Кембриджском университете, а сам занялся богословием.

Третий предшественник Ньютона - Роберт Гук - был замечательный физик-экспериментатор. Он также пытался вывести открытые Кеплером законы движения планет из притяжения Земли к Солнцу. Гук угадал, что для справедливости законов Кеплера необходимо, чтобы притяжение между телами было обратно пропорционально квадрату расстояния между ними. Но строго доказать этот факт Гук не сумел или не успел; Ньютон опередил его, и с тех пор они стали соперниками на всю жизнь.

Опираясь на достижения этих первопроходцев, Ньютон совершил в 1665-67 годах великий прорыв в новую математику. Эти два года он провел в одиночестве, скрываясь в деревне от эпидемии чумы и неустанно размышляя о том, как описать законы природы с помощью исчисления сил, действующих между природными телами и вызывающих движения этих тел. Понимание существа дела пришло к Ньютону на очень высоком уровне абстракции. Что, собственно, происходит в природе"

Есть некие величины, измеряемые числами и изменяющиеся со временем - как бы текущие; Ньютон назвал их по латыни - "флюенты", а мы называем их функциями. Можно вычислить скорость изменения такой флюенты - "флюксию" (или производную); она тоже изменяется со временем. Любой природный закон выражается некой алгебраической или геометрической связью между разными флюентами и их флюксиями. Такую связь математики называют в наши дни дифференциальным уравнением.

Чтобы эти общие рассуждения превратились в строгую науку, нужно придумать удобный "портрет" флюенты или флюксии, доступный как для геометрического воображения, так и для алгебраических расчетов. Первую часть такого портрета открыл Декарт: это график функции. Вторую (алгебраическую) часть портрета функции предложил Ньютон. Он стал изображать любую функцию степенным рядом, то есть бесконечно длинным аналогом многочлена. Например:

sin(x) = x - x /6 + x /120 - x ./5040 + .

Таким образом Ньютон навел порядок в новом сложном мире гладких функций и дифференциальных уравнений, связывающих эти функции между собой, согласно законам природы. В этой картине мира многие сложные проблемы прошлого стали простыми вычислительными упражнениями. Такова, например, теорема Ньютона-Лейбница о том, что операции интегрирования и дифференцирования функций взаимно обратны. Аналогично, из угаданной Гуком формулы закона притяжения между массивными телами Ньютон алгебраически вывел все возможные типы орбит, по которым движутся небесные тела. Это оказались кривые второго порядка: эллипс, парабола и гипербола. Режим движения тел по этим кривым удовлетворяет законам Кеплера.

Так новая математика Ньютона свела экспериментально обнаруженные законы движения планет и комет к более глубоким законам, которые регулируют силовое взаимодействие любых природных тел. Можно ли свести законы природных сил к еще более глубоким природным закономерностям"

Ньютон был уверен, что это возможно. Но он догадывался, что новый шаг в познании природы потребует создания совсем новых разделов математики - и не мог угадать, какими они должны быть.

Перейти на страницу: 1 2 3

Другое по теме

Инфразвук
В течение последних десятилетий резко возросло количество разного рода машин и других источников шума, распространение портативных радиоприемников и магнитофонов, нередко включаемых на большую громкость, увлечение громкой популярной музыкой. Отмечено, что в городах каждые 5-10 лет уровень шума возрастает на 5 дБ (дециб ...

Движение. Пространство и время
Что делает мир единым? Пытались найти основу всего сущего. Основа всего сущего–субстанция(категория философии). Понятие субстанции сформировалось не сразу. Первоначально субстанция–субстрат. Сегодняшнее понимание–многообразие вещей, явлений, которые существуют через субстанцию, благодаря ей, но сами субстанцией не яв ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru