Атом водорода. Вырождение энергетических уровней.

Наличие у нерелятивистского электрона четырех степеней свободы требует задания его состояния при помощи четырех параметров. Для описания положения электрона в пространстве удобно использовать полярную систему координат с началом отсчета, совмещенным с ядром атома (рис. 21_1). Соответствующие базисные состояния удобно обозначать как . Сохраняющиеся во времени состояния, получаемые в результате решения стационарного уравнения Шредингера, соответствуют определенным значениям энергии, момента импульса, проекции момента на ось z и одному из двух возможных значений спиновой переменной: . Принимающие дискретный набор значений параметры, характеризующих стационарное состояние, называются квантовыми числами. Главное квантовое число n определяет энергию электрона в стационарном состоянии:

(1) .

( Ry=13.6 эВ - “постоянная Ритберга”). Азимутальное квантовое число l определяет величину момента импульса , обусловленного орбитальным движением электрона:

(2)

Магнитное квантовое число m определяет пространственную ориентацию момента импульса (точнее величину его проекции на произвольно заданное направление в пространстве; проекции на другие направления в стационарном состоянии не определены):

(3) .

В соответствии с общими правилами квантовой механики вероятность обнаружения в выбранной точке пространства электрона, находящегося в стационарном состоянии дается квадратом модуля шредингеровской волновой функции. Математические свойства уравнения Шредингера для рассматриваемой системы позволяют представить волновую функцию как произведение двух, зависящих только от расстояния и только от углов соответственно.

(4)

Как видно, существуют наборы различающихся друг от друга состояний, обладающих одинаковой энергией. Соответствующие им энергетические уровни называются вырожденными. В квантовой механике показывается, что вырождение уровней является следствием наличия у системы симметрии. Уровни атома водорода сильно вырождены из-за высокой симметрии электрического поля, создаваемого практически точечным ядром.

Проблема описания многоэлектронных атомов. Стационарная теория возмущений. Задача описания квантовомеханических систем, содержащих несколько микрообъектов до сих пор не решена в общем виде. Реальные расчеты проводятся по методу последовательных приближений, в рамках которого осуществляется поэтапный учет имеющихся в атоме взаимодействий по мере убывания их интенсивности. Приближенное решение, полученное на определенным этапе является основой для последующего уточнения вида оператора Гамильтона и соответствующих ему собственных волновых функций. Математическая реализация описанной процедуры в квантовой механике получила название теории возмущений.

В настоящее время интенсивное развитие вычислительной техники сделало возможным другого, более точного метода численных расчетов многоэлектронных атомов, основанного на использовании экстремальных принципов квантовой механики - метода Хартри и Фока. Для сложных атомов осуществление такого подхода требует использования практически предельных возможностей современной вычислительной техники.

Нулевое приближение теории возмущений: Периодическая Система Элементов. В рамках нулевого (самого грубого) приближения теории возмущений учитывается только взаимодействие электронов с ядром и запрет на их эквивалентные состояния, налагаемый принципом Паули. При этом разрешенные для электронов состояния водородоподобны.

Число электронов в нейтральном атоме, разумеется, должно равняться порядковому номеру элемента, определяемому зарядом ядра. Заполнение “вакантных” мест на энергетических уровнях электронами “регламентируется” стремлением атома (как и любой другой системы) к минимуму энергии и запретом Паули, допускающим нахождение не более одного электрона в каждом из состояний . С учетом соотношений между квантовыми числами легко получить, что на всех состояниях уровня с n=1 может находиться 2 s-электрона, на n=2 - 8 электронов (2 в s-состоянии и 6 p-электронов), группа состояний с n=3 помимо s и p имеют d-оболочку, суммарное число электронов оказывается равным 18). Находящиеся на верхнем энергетическом уровне электроны наименее сильно связаны с ядром и легче откликаются на внешние воздействия (например, при передаче энергии к атому эти электроны легче возбуждаются, переходя на более высокие свободные энергетические уровни). Именно эти валентные электроны способны участвовать в обменных взаимодействиях, подобных приводящему к образованию молекулярного иона водорода. Поскольку число валентных электронов на верхнем уровне по мере увеличения заряда ядра периодически изменяется от 1 до максимального значения, химические свойства элементов так же обнаруживают периодические изменения.

Перейти на страницу: 1 2 3 4

Другое по теме

Конструктивистский дискурс как философско-методологическая основа изучения когнитивных функций головного мозга
В течение последних двадцати лет в странах Западной Европы и США широкое распространение стало обретать философское направление, называемое радикальным конструктивизмом. Основной тезис, вокруг которого представители данного направления строят свои концепции, в формулировке Э. фон Глазерсфельда звучит следующим образом: ...

Квантовые эффекты. Ограничения применимости теории тяготения Эйнштейна
Теория Эйнштейна — не квантовая теория. В этом отношении она подобна классической электродинамике Максвелла. Однако наиболее общие рассуждения показывают, что гравитационное поле должно подчиняться квантовым законам точно так же, как и электромагнитное поле. В противном случае возникли бы противоречия с принципом неопределённо ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru