Наноустройства

Нельзя не остановиться еще на одном парадоксальном явлении - аномально высокой подвижности больших компактных кластеров. Вслед за авторами замечательной экспериментальной работы [41] рассмотрим компактный кластер правильной формы, состоящий из "магического" числа атомов иридия N = 1 + Зn(n - 1), n = 2, 3, . , напримерN = 19, на поверхности плотно упакованной грани (111) иридия. Казалось бы, подвижность кластера, содержащего два десятка атомов, как целого, должна быть на много порядков меньше подвижности одиночного атома, так как миграция атомов представляется случайным процессом. В эксперименте установлено, что скорость миграции "правильных" кластеров сравнима со скоростью миграции одиночного атома! Это следствие коллективного движения атомов кластера требует детального теоретического описания и математического моделирования. Результаты такого анализа представляют значительный интерес при вычислении предэкспонент и эффективных энергий активации миграции для динамического метода Монте-Карло и для кинетических уравнений неидеального слоя. Зная реальные скорости миграции, можно правильно оценить время жизни наномеровых конструкций.

Нет надобности убеждать читателя в том, что перечисленные результаты лабораторного эксперимента демонстрируют необходимость развития классических моделей математической физики. При исследовании нанообъектов там, где это требуется, следует отказаться от идеи непрерывной среды, лежащей в основе подавляющего большинства моделей математической физики. Моделирование по инерции, без учета результатов лабораторного эксперимента, приводит к абсолютно неверным результатам. Так же очевидна потребность в новом современном курсе математической физики, учитывающем особенности нанообъектов. В этом курсе, в частности, следовало бы уделить внимание

Рис. 11. (CO + O2 )/Pt(210)

методам дискретной математики, перечислительной комбинаторики, теории групп.

Более сложные примеры нетривиального динамического поведения открытых неидеальных систем дают модельные реакции гетерогенного катализа на определенных гранях монокристаллов благородных металлов (Pt(111), Pt(100), Pt(110), Pt(210), Pd(111), Pd(110)) при низких парциальных давлениях в газовой фазе. Это реакции окисления монооксида углерода (СО) кислородом (О2), а также редукция монооксида азота (NO) водородом (Н2), аммиаком (NH3 ) и монооксидом углерода. Перечисленные реакции играют существенную роль в экологической проблеме дожигания ядовитых выбросов (NO, CO и др.) двигателей внутреннего сгорания и тепловых электростанций. Исследования, выполненные в последние годы [42-50], открыли восхитительную нано- и мезодинамику этих систем. Обнаружены фазовые переходы типа порядок-беспорядок, сопровождающиеся образованием сверхструктур в монослое адсорбата, фазовые переходы типа расслоения на фазы, спонтанная и индуцированная адсорбатом реконструкция поверхности граней монокристаллов, коррозия катализатора. Процессы пространственно-временной самоорганизации, протекающие в нанометровой шкале размеров, тесно связаны с аналогичными явлениями, наблюдающимися с помощью эмиссионной фотоэлектронной микроскопии в микрометровом диапазоне. К таким явлениям относятся микрометровые спиральные, стоячие и триггерные 0олны, двойная метастабильность, химическая турбулентность. На рис, 11 представлены результаты исследования пространственно-временной самоорганизации в реакции окисления монооксида углерода на грани монокристалла Pt(210) методом эмиссионной фотоэлектронной микроскопии [47]. В каждой рамке (380 х 380мm) показано пространственное распределение адсорбированных молекул СО (светлые области) и атомов кислорода (темные области) на поверхности катализатора для различных значений парциальных давлений СО и кислорода в газовой фазе при постоянной температуре поверхности. Отчетливо видны спиральные волны и автоволны фазового перехода типа расслоения на фазы, явления двойной метастабильности и т. п.

Сноски:

1 Размер атома составляет несколько десятых нанометра.

2 Описание приборов и принципов их действия содержится в [3].

3 Пара натуральных чисел (m, n) определяет вектор хиральности в плоскости графитового листа. Ось нанотрубки перпендикулярна вектору хиральности. Так, при (n, n) ((n, 0)) ось трубки параллельна (перпендикулярна) стороне правильного шестиугольника.

4 Аббревиатура BDC обозначает бензолдикарбоксил, a DMF - диметил-формамид.

5 Цифры в скобках обозначают индексы Миллера грани монокристаллической подложки [113].

Перейти на страницу: 1 2 3 

Другое по теме

Научно-техническая программа КНР взгляд в будущее
В начале 1999 года был опубликован доклад Лозанского Международного Института Развития и Менеджмента, в котором китайские наука и техника по итогам 1998 года уверенно заняли 13 место в мире. Беспрецедентный скачок с 20 места в 1997 году еще раз доказал, что Китай уверенно идет вперед по пути реформ научно-технической и ...

Осушительно-увлажнительная система
Задачей курсовой работы является углубление и обобщение полученных студентами знаний при изучении соответствующих разделов курса, приобретение практических навыков проектирования осушительных систем и приучение к самостоятельной работе со справочной и специальной литературой. Курсовая работа выполняется в соответств ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru