Космологические парадоксы

На опровержение второго начала термодинамики были брошены силы всех материалистически мыслящих ученых. Так, в 1895 г. Людвиг Больцман предложил свою вероятностную трактовку второго начала. По его гипотезе, возрастание энтропии происходит потому, что состояние беспорядка всегда более вероятно, чем состояние порядка. Но это не означает, что процессы противоположного характера, то есть самопроизвольные с уменьшением энтропии, абсолютно невозможны. Они в принципе возможны, хотя и крайне маловероятны.

Всюду мы наблюдаем, как тепло от более горячего тела переходит к более холодному. Однако в принципе возможно и другое: кусок льда, брошенный в печь, увеличит ее жар. Не исключено и такое событие, что все молекулы воздуха в нашей комнате соберутся вдруг в одном ее углу, а вы погибнете от удушья в другом. Наконец, возможно, что обезьяна, посаженная за пишущую машинку, случайно выстучит пальцем сонет Шекспира. Все эти события возможны, но вероятность их близка к нулю. Такова же, по Больцману, вероятность существования нас с вами.

Больцман не сомневался, что Вселенная бесконечна в пространстве и времени. В основном и почти всегда она пребывает в состоянии тепловой смерти. Однако иногда в некоторых ее районах возникают крайне маловероятные отклонения (флуктуации) от обычного состояния Вселенной. К одной из них принадлежит Земля и весь видимый нами космос. В целом же Вселенная - безжизненный мертвый океан с некоторым количеством островков жизни.

Гипотеза Больцмана хотя и подвергла сомнению всеобщность и строгую обязательность второго начала, не смогла удовлетворить оптимистически мыслящих ученых. К тому же и расчеты показали, что вероятность возникновения такой гигантской флуктуации в пространстве практически равна нулю.

Были и другие попытки объяснить этот термодинамический парадокс, но они так же не увенчались успехом.

Три космологических парадокса: фотометрический, гравитационный и термодинамический - заставили ученых серьезно усомниться в бесконечности и вечности Вселенной. Именно -они заставили А. Эйнштейна в 1917г. выступить с гипотезой о конечной, но безграничной Вселенной.

Предположим, что вещество, составляющее планеты, звезды и звездные системы, равномерно рассеяно по всему мировому пространству. Тем самым мы допускаем, что Вселенная всюду однородна и к тому же изотропна, то есть во всех направлениях имеет одинаковые свойства. Будем считать, что средняя плотность вещества во Вселенной выше так называемой критической плотности. Если все эти требования соблюдены, мировое пространство, как это доказал Эйнштейн, замкнуто и представляет собой четырехмерную сферу, для которой верна не привычная школьная геометрия Евклида, а геометрия Римана.

Перейти на страницу: 1 2 

Другое по теме

Большой взрыв
По современным представлениям, состояние расширяющейся Вселенной в прошлом (около 13 млрд. лет назад), когда ее средняя плотность в огромное число раз превышала нынешнюю. Периодом Большого взрыва условно называют интервал времени от 0 до нескольких сот секунд. В самом начале этого периода вещество во Вселенной приобрело кол ...

Нанотехнологии, наноматериалы, наноустройства
Краткая справка об авторе: профессор факультета вычислительной математики и кибернетики Московского государственного университета им. М.В.Ломоносова, ведущий научный сотрудник Института прикладной математики им. М.В.Келдыша РАН. Если уж стальной кубик или кристаллик соли, сложенный из одинаковых атомов, может обнаруж ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru