Границы применимости нового физического закона.

Укажем пределы изменения массы и длины в новом законе конвергирующего поля m·l = Gu. В [10, 11, 17] показано, что электромагнитная масса принимает значения от некоторого предельного космологического значения mcos до me:

mcos ≤ m ≤ me.

Метрическая характеристика изменяется от некоторого предельного космологического значения lcos до lu:

lu ≤ l ≤ lcos.

При увеличении массы до значении m = mе т. е. при достижении массы значения массы электрона, характерная длина уменьшается до классического радиуса электрона. Таким образом верхнее предельное значение массы для конвергирующего поля ограничено массой электрона и позитрона. Как видим, масса для конвергирующего поля является динамическим параметром. Длина также является динамическим параметром. При l = re масса квантуется. При таком значении метрики масса перестает быть динамическим параметром, она фиксируется в своей величине, выступает как масса покоя частицы, что приводит к появлению локального объекта – элементарной частицы. Нелокальность, свойственная квантовым объектам поля, имеющим изменяющуюся электромагнитную массу, сменяется локальностью, свойственной вещественным частицам, имеющим фиксированную инертную массу. При l = re динамический физический объект, обладавший свойством непрерывности, приобретает новое свойство – дискретность и физическая реальность предстает в виде вещества (частиц).

Таким образом новый закон описывает механизм рождения вещества конвергирующим полем. График зависимости между массой и длиной в новом физическом законе приведен на (рис. 3).

Рис. 3. График зависимости между массой и длиной в конвергирующем поле.

Исходя из нового закона m·l = Gu, находит подтверждение смелая идея Лоренца о том, что масса электрона имеет электромагнитное происхождение. Природа массы электрона и спектр масс элементарных частиц были одними из трудных нерешенных задач фундаментальной физики. Р. Фейнман отмечал, что «масса электрона вполне может быть целиком электромагнитной, т.е. все его 0.511 Мэв обусловлены электродинамикой. Так это или нет? У нас нет теории и по сей день, поэтому мы ничего не можем сказать с уверенностью». [1]. До сих пор не были раскрыты ни происхождение массы, ни ее сущность. Отсутствовала теория массы, не было теории, объясняющей, почему массы элементарных частиц квантованы и образуют дискретный спектр значений. Приведенные выше результаты проливают свет на эти проблемы. Здесь следует особо подчеркнуть, что масса в конвергирующем поле является динамическим параметром и рассматривается нами как эквивалент энергии кванта, поэтому наделять ее механическим, например, инерционным свойством недопустимо.

Закон m·l = Gu не является единственным для конвергирующего поля. Существует второй динамический закон конвергирующего поля. Второй закон конвергирующего поля связан с константой сопротивления конвергирующего поля Ru, который объединяет метрические характеристики в виде [8, 10, 11, 17]:

L·ν = Ru = const,

где: L – индуктивность, ν – частота, Ru - константа сопротивления (Ru = 29.9792458 [Ом]) [8, 10, 11, 17].

Этот закон показывает, что индуктивность и частота находятся в обратной зависимости, а их произведение равно константе Ru. Из динамического закона L·ν = Ru следует, что индуктивность принимает значения от некоторого предельного космологического значения Lcos до Lu (Lu = 2.817940285(31)·10-22 [Гн]) [17]:

Lu ≤ L ≤ Lcos.

Частота изменяется от αH до νu (νu = 1.06387·1023 [Гц]) [17]:

αH ≤ ν ≤ νu.

где: Н – постоянная Хаббла, α – постоянная тонкой структуры.

Границы применимости нового закона находятся в огромном диапазоне пространственных интервалов – от 10-14 см. до 1028 см. и временных интервалов - от 10-23с. до 1017с.

Другое по теме

Метод стандартной добавки и метод Грана.
Перед тем, как излагать индивидуальные особенности той или иной разновидности метода добавок, опишем в нескольких словах процедуру анализа. Процедура состоит в том, что в анализируемую пробу делается добавка раствора, содержащего тот же анализируемый ион. Например, для определения содержания ионов натрия делаются добавки станд ...

Международные космические организации
Тема моей работы Международные космические организации. Целью данной работы является дать общую характеристику комических организаций, раскрыть принципы деятельности международных космических организаций показать актуальность данной темы, показать организационную структуру, задачи, вопросы членства в международных орга ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru