Физический вакуум

Физическая энциклопедия. НУЛЕВЫЕ КОЛЕБАНИЯ.

Таким образом, в природе не существует пустоты, а физический вакуум представляет материальную полевую среду, где даже в основном вакуумном состоянии наблюдаются нулевые колебания (флуктуации) поля. Все виды материи имеют флуктуации, так как на любом уровне, как микро, так и макро, не существует материи без движения.

«Такой вакуум нельзя рассматривать как просто пустое место. Физический вакуум является особым состоянием поля с важными физическими свойствами, которые проявляются в реальных процессах.»

Энциклопедия элементарной физики. ВАКУУМ.

Таким образом, в физике сложился дуализм - с одной стороны, для некоторых теорий нет необходимости в физическом вакууме, с другой стороны, экспериментально установлено и на сегодня уже общепризнано, что вакуум не является пустотой, представляя материальную среду, обладающую физическими свойствами.

С современной точки зрения вакуум обладает свойствами материальной среды, являясь состоянием поля с наименьшей энергией. Согласно квантовым представлениям, в вакууме могут образовываться состояния (возмущения) с положительными или отрицательными уровнями энергии относительно нулевого состояния. Материальный физический вакуум является универсальной средой, которая "прозрачна" для любых электромагнитных волн (поперечных, продольных, стоячих), т.е. и для частиц вещества - возбужденных состояний поля. Согласно электродинамике, электрическое смещение - это относительное смещение положительных и отрицательных электрических зарядов в электрически нейтральной среде Кл/м2. В вакууме, как в диэлектрике, аналогично токам поляризации может течь ток смещения - возникать электрическое смещение, т.е. вакуум обладает таким физическим свойством, как диэлектрическая проницаемость (в диэлектриках могут распространяться поперечные волны поляризационного смещения, при этом не имеет значения состояние диэлектрика - твердое, жидкое или газообразное). Так как могут распространяться поперечные возмущения (волны), кванты поля, совершая колебания как гармонические осцилляторы (отклоняясь от положения равновесия), находятся в связанном состоянии, т.е. кванты поля, представляя элементарные электрические заряды, при возмущениях поля смещаются (ток смещения) в зависимости от ориентации возмущений в продольном или поперечном направлении. Хотя на сегодня известны многие свойства квантового поля и можно условно представить его строение, вопрос о его физической природе остается открытым. В первом приближении квантовое поле можно представить как пространство, заполненное квантами заряда, т.е. все уровни физического вакуума заполнены квантами одного знака (теория дырок Дирака). Такое полевое пространство из зарядов одного знака можно рассматривать как упругую полевую среду, так как заряды находятся в связанном между собой состоянии, т.е. смещение кванта заряда приводит к смещению окружающих его зарядов, представляя отклонение от положения равновесия, которое как возмущение поля может распространяться в полевом пространстве. Кванты заряда всегда движутся (нет материи без движения), т.е. с квантами связано также магнитное поле (поток). Таким образом, квант поля представляет как электрический, так и магнитный квант - электромагнитный осциллятор. Например, Максвелл в разработанной им теории электромагнитного поля сравнивал электродинамический вакуум с жидкостью, условно представляя его состоящим из "молекулярных" (дискретных) связанных электрических зарядов (в то время еще не было терминов "кванты", "осцилляторы поля", а "молекулярность" означала "дискретность"), которые могут смещаться от положения равновесия, создавая ток смещения (вихревое электрическое поле). Токи при этом всегда замкнуты, так как заряды находятся в связанном состоянии. Такого представления было достаточно, чтобы предсказать электромагнитные волны. В дальнейшем, после того, как было установлено, что все электрические заряды (токи) дискретны, соответственно, и свойства электромагнитных волн также стали дискретными из-за дискретности токов смещения связанных электрических зарядов, которые при распространении волн совершают колебания как гармонические осцилляторы. Дискретность электромагнитных волн обнаружена экспериментально, что подтверждает правильность теории электромагнитного поля Максвелла о "молекулярной" (корпускулярной) природе электродинамического вакуума, т.е. о квантовой (дискретной) природе поля. Поэтому теорию электромагнитного поля Максвелла с современной точки зрения можно считать квантовой, а введенный им электрический ток смещения - квантовым током, т.е. любой ток всегда связан с движением (смещением) квантов поля - элементарных электрических зарядов. Надо наконец признать, что Максвелл предсказал не только электромагнитные волны, но и по сути предвидел квантовую ("молекулярную") природу электродинамического вакуума, т.е. заложил основы материалистической квантовой теории поля. Максвелл в своей теории на много лет опередил время. Представить, что вакуум на самом деле является диэлектриком, где связанные заряды представляют поле осцилляторов и, соответственно, все частицы могут быть только в виде волн, это очень необычно, даже сейчас, когда экспериментально установлено, что все частицы обладают волновыми свойствами, т.е. являются волнами квантового поля.

Перейти на страницу: 1 2 3 4

Другое по теме

Взрывающаяся Вселенная
С того времени, когда Галилей впервые с помощью телескопа исследовал Млечный Путь, мы знаем, что он состоит из звезд, а Солнце представляет собой лишь одну из сотен миллиардов звезд, образующих Галактику Млечного Пути, а за пределами нашей Галактики лежит необъятная Вселенная. За последние годы наука добилась захватыва ...

Ионометрия. Метод добавок
Интерес к методу добавок в ионометрии вызывается тем, что он играет более значительную роль, чем метод добавок в других методах анализа. Ионометрический метод добавок дает два больших преимущества. Во-первых, если колебание ионной силы в анализируемых пробах непредсказуемо, то применение распространенного метода градуи ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru