Соли

Бораты щелочных металлов, аммония и Т1(I) растворимы в воде (особенно мета- и пентабораты), в водных растворах гидролизуются (растворыры имеют щелочную реакцию). Большинство боратов легко разлагается кислотами, в некоторых случаях - при действии СО2; и SO2;. Бораты щелочно-земельных и тяжелых металлов взаимодействуют с растворами щелочей, карбонатов и гидрокарбонатов щелочных металлов. Безводные бораты химически более стойки, чем гидратированные. С некоторыми спиртами, в частности с глицерином, бораты образуют растворимые в воде комплексы. При действии сильных окислителей, в частности Н2О2, или при электрохимическом окислении бораты превращаются в пероксобораты.

Известно около 100 природных боратов, являющихся в основном солями Na, Mg, Ca, Fe.

Гидратированные бораты получают: нейтрализацией Н3ВО3 оксидами, гидроксидами или карбонатами металлов; обменными реакциями боратов щелочных металлов, чаще всего Na, с солями других металлов; реакцией взаимного превращения малорастворимых боратов с водными растворами боратов щелочных металов; гидротермальными процессами с использованием галогенидов щелочных металлов в качестве минерализующих добавок. Безводные бораты получают сплавлением или спеканием В2О3 с оксидами или карбонатами металлов или обезвоживанием гидратов; монокристаллы выращивают в растворах боратов в расплавленных оксидах, напр Вi2О3.

Бораты используют: для получения других соединений бора; как компоненты шихты при производстве стекол, глазурей, эмалей, керамики; для огнестойких покрытий и пропиток; как компоненты флюсов для рафинирования, сварки и пайки металле”; в качестве пигментов и наполнителей лакокрасочных материалов; как протравы при крашении, ингибиторы коррозии, компоненты электролитов, люминофоров и др. Наибольшее применение находят бура и кальция бораты.

2. Галогениды

, химические соединения галогенов с др. элементами. К галогенидам обычно относят соединения, в которых атомы галогена имеют большую электроотрицательность, чем др. элемент. Галогенидов не образуют Не, Ne и Аг. К простым, или бинарным, галогенидам ЭХn (n - чаще всего целое число от 1 у моногалогенидов до 7 у IF7, и ReF7, но может 6ыть и дробным, например 7/6 у Bi6Cl7) относят, в частности, соли галогеноводородных кислот и межгалогенные соединения (напр., галогенфториды). Существуют также смешанные галогениды, полигалогениды, гидрогалогениды, оксогалогениды, оксигалогениды, гидроксогалогениды, тиогалогениды и комплексные галогениды. Степень окисления галогенов в галогенидах обычно равна —1.

По характеру связи элемент-галоген простые галогениды подразделяют на ионные и ковалентные. В действительности связи имеют смешанный характер с преобладанием вклада той или иной составляющей. Галогениды щелочных и щелочно-земельных металлов, а также многие моно- и дигалогениды др. металов - типичные соли, в которых преобладает ионный характер связи. Большинство из них относительно тугоплавки малолетучи, хорошо растворимы а воде; в водных растворах почти полностью диссоциируют на ионы. Свойствами солей обладают также тригалогениды редкоземельных элементов. Растворимость в воде ионных галогенидов, как правило, уменьшается от иодидов к фторидам. Хлориды, бромиды и иодиды Ag+, Сu+, Hg+ и Pb2+ плохо растворимы в воде.

Увеличение числа атомов галогенов в галогенидах металлов или отношения заряда металла к радиусу его иона приводит к повышению ковалентной составляющей связи, снижению растворимости в воде и термической устойчивости галогенидов, увеличению от летучести, повышению окислит, способности и склонности к гидролизу. Эти зависимости наблюдаются для галогенидов металлов одного и того же периода и в ряду галогенидов одного и того же металла. Их легко проследить на примере термических свойств. Например, для галогенидов металлов 4-го периода температуры плавления и кипения составляют соответственно 771 и 1430°С для КС1, 772 и 1960°C для СаС12, 967 и 975°С для ScCl3, -24,1 и 136°С для TiCl4. Для UF3 температура плавления ~ 1500°С, UF4 1036°C, UF5 348°С, UF6 64,0 °С. В рядах соединений ЭХn при неизменном n ковлентность связи обычно увеличивается при переходе от фторидов к хлоридам и уменьшается при переходе от последних к бромидам и иодидам. Так, для АlF3 температура возгонки 1280°C, А1С13 180°С, температура кипения А1Вr3 254,8 °С, АlI3 407°С. В ряду ZrF4, ZrCl4 ZrBr4, ZrI4 температура возгонки равна соответственно 906, 334, 355 и 418°С. В рядах MFn и МС1n где М-металл одной подгруппы, ковалентность связи уменьшается с ростом атомной массы металла. Фторидов и хлоридов металлов с примерно одинаковым вкладом ионной и ковалентной составляющей связи немного.

Перейти на страницу: 1 2 3 4 5 6 7 8 9

Другое по теме

Основы обратноосмотической обработки воды
Метод обратного осмоса заключается в фильтрации растворов под давлением через специальные полупроницаемые мембраны, пропускающие молекулы растворителя и полностью или частично задерживающие молекулы либо ионы растворенных веществ. В основе метода лежит явление осмоса – самопроизвольного перехода воды через полупроницаем ...

Движение. Пространство и время
Что делает мир единым? Пытались найти основу всего сущего. Основа всего сущего–субстанция(категория философии). Понятие субстанции сформировалось не сразу. Первоначально субстанция–субстрат. Сегодняшнее понимание–многообразие вещей, явлений, которые существуют через субстанцию, благодаря ей, но сами субстанцией не яв ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru