Модели нейронных сетей.

Рассматриваемые нами модели нейронных сетей объединены в три группы. В п. 2.1.1. рассматриваются сети персептронного типа, для которых характерно отсутствие обратных связей между нейроподобными элементами, организованными в слои. Отличительной особенностью сетей, представленных в п. 2.1.2, являются симметричные (равные по величине и противоположные по направлению) связи между любыми двумя соединенными нейронами. В нейросетевых архитектурах, описанных в п. 2.1.3, между нейронами одного слоя имеются постоянные тормозящие связи (латеральное торможение).

Сети с прямыми связями.

Прямой персептрон. В середине 50-х годов была предложена одна из первых моделей нейронных сетей, которая вызвала большой интерес из-за своей способности обучаться распознаванию простых образов. Эта модель - персептрон - состоит из бинарных нейроподобных элементов и имеет простую топологию, что позволило достаточно полно проанализировать ее работу и создать многочисленные физические реализации. Типичный персептрон состоит из трех основных компонент:

матрицы бинарных входов r1, r2, ., rn (сенсорных нейронов или «сетчатки», куда подаются входные образы);

набора бинарных нейроподобных элементов x1, x2, ., xm (или предикатов в наиболее общем случае) с фиксированными связями к подмножествам сетчатки («детекторы признаков»);

бинарного нейроподобного элемента с модифицируемыми связями к этим предикатам («решающий элемент»).

На самом деле число решающих элементов выбирают равным количеству классов, на которое необходимо разбить предъявляемые персептрону образы.

Таким образом, модель персептрона характеризуется наличием только прямых связей, один из слоев которых является модифицируемым. В постейшем случае, когда n = m и xi = ri, детекторы признаков могут рассматриваться как входной слой. Тогда персептрон становится одним бинарным нейроподобным элементом. Это классическая модель М-входового нейрона, приведенная на рис. 1.1, или простой персептрон Розенблатта. В общем случае каждый элемент xi может рассматриваться как булева функция, зависящая от некоторого подмножества сетчатки. Тогда величина выходных сигналов этих обрабатывающих элементов является значением функции xi, которое равно 0 или 1.

Устройство реагирует на входной вектор генерацией выходного сигнала y решающего элемента по формуле (1.3). Таким образом, персептрон формирует гиперплоскость, которая делит многомерное пространство x1, x2, ., xm на две части и определяет, в какой из них находится входной образ, выполняя таким образом, его классификацию. Возникает вопрос, как определить значения весов, чтобы обеспечить решение персептроном конкретной задачи. Это достигается в процессе обучения.

Один из алгоритмов обучения приведен в параграфе 2.2.

Многослойный персептрон. Как отмечалось выше, простой персептрон с одним слоем обучаемых связей формирует границы областей решений в виде гиперплоскотей. Двухслойный персептрон может выполнять может выполнять операцию логического «И» над полупространствами, образованными гиперплоскостями первого слоя весов. Это позволяет формировать любые, возможно неограниченные, выпуклые области в пространстве входных сигналов. С помощью трехслойного персептрона, комбинируя логическими «ИЛИ» нужные выпуклые области, можно получить уже области решений произвольной формы и сложности, в том числе невыпуклые и несвязные. То, что многослойные персептроны с достаточным множеством внутренних нейроподобных элементов и соответствующей матрицей связе в принципе способны осуществлять любое отображение вход - выход, отмечали еще Минский и Пейперт, однако они сомневались в том, что можно открыть для них мощный аналог процедуры обучения простого персептрона. В настоящее время в результате возрождения интереса к многослойным сетям предложено несколько таких процедур. Часть из них приведена в параграфе 2.2.

Перейти на страницу: 1 2 3

Другое по теме

Эволюция и сотворение мира
Разница между учением Библии и естественнонаучным взглядом на возникновение мира и жизни на Земле состоит вовсе не в противопоставлении мгновенного возникновения и длительного развития. Согласно Книге Бытия Бог последовательно сотворил свет, твердь небесную, сушу и растительность, светила, рыб и птиц, животных и челове ...

Квантовые эффекты. Ограничения применимости теории тяготения Эйнштейна
Теория Эйнштейна — не квантовая теория. В этом отношении она подобна классической электродинамике Максвелла. Однако наиболее общие рассуждения показывают, что гравитационное поле должно подчиняться квантовым законам точно так же, как и электромагнитное поле. В противном случае возникли бы противоречия с принципом неопределённо ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru