Принцип Ферма.

Законы отражения и преломления света на границе раздела двух прозрачных сред удовлетворяют более общему принципу Ферма, согласно которому световые лучи в неоднородной среде имеют форму кривых, при движении вдоль которых свет затрачивает экстремальное (минимальное или максимальное) время на распространение между двумя выбранными точками среди бесконечного множества всевозможных близлежащих путей. Принцип Ферма может быть выведен из волновой теории как ее частное следствие и позволяет правильно описывать распространение света в средах с переменным показателем преломления, в случаях когда само понятие луча имеет смысл. Согласно этому принципу лучи света искривляются в сторону возрастания показателя преломления. Это свойство объясняет ряд “оптических иллюзий”: миражи - искривление световых лучей в слое нагревшегося у раскаленной поверхности песка или асфальта воздуха (рис. 17_5), “запаздывание” захода Солнца за горизонт вследствие искривления лучей неоднородной атмосферой (рис. 17_6) и другие. В случае существования нескольких близких путей, требующих одинакового времени распространения света, лучи распространяются по каждому из них. На этом основано действие оптической линзы, собирающей испущенный точечным источником света пучок лучей в точку за счет “выравнивания” оптических длин путей (рис. 17_7).

Экстремальные принципы в физике нередко вызывают недоумение у любителей “пофилософствовать” на около научные темы. По поводу принципа Ферма задается вопрос, откуда свет знает о том, какой путь окажется экстремальным? При внимательном рассмотрении становится очевидной наивность самой постановки вопроса, поскольку само используемое при формулировке экстремального принципа понятие светового луча является не более, чем грубой моделью с очень ограниченной областью применимости. Свет, как совокупность электромагнитных волн, “подчиняется” не этому принципу, а системе уравнений Максвелла (которая, разумеется, тоже упрощает реальное положение дел), решение которой в некоторых случаях можно наглядно сформулировать в виде принципа наименьшего времени. Т.о. “правильными” были бы вопросы о том, почему приближенно верна система уравнений Максвелла (т.е. следствием какой более общей теории она является) и почему следствия волновой теории в области применимости геометрической оптики удается сформулировать в виде экстремального принципа.

Ответ на первый вопрос будет обсуждаться в дальнейшем. что касается второго, что любой закон, записываемый в виде математического соотношения

(3) ,

может быть переформулирован как экстремальный принцип. Действительно, введение функцию

(4)

и постановка условия ее экстремальности приводит к выражению

(5) ,

математически эквивалентному (3). В случае геометрической оптики получилось так, что функция G(X) оказалась имеющей простой физический смысл (время распространения света).

Классическая механика Ньютона может быть так же сформулирована как следствие экстремального принципа, согласно которому движущиеся частицы “выбирают” траектории, соответствующие минимальной величине функции Лагранжа ( интеграла от действия):

(6) .

Законы движения тел в искривленном пространстве-времени так же были сформулированы в виде экстремального принципа (минимальности собственного времени).

Экстремальные принципы широко распространены в современной физике, поскольку позволяют формулировать ее законы в весьма краткой форме.

Вращение плоскости поляризации света оптически активными веществами является примером “неожиданного”, но на первый взгляд весьма частного явления природы, последующие размышления над которым привели к выводам, выходящим далеко за рамки геометрической оптики. Линейно поляризованными называется электромагнитные волны, вектор электрического поля которых всегда направлен вдоль прямой, определяющей направление поляризации (изображенная на рис. 17_1 волна поляризована в направлении “Х”). Естественный свет, создаваемый традиционными источниками, является хаотической смесью коротких цугов излучения с различной поляризацией. Пропуская такой свет через поляризатор (устройство, гасящее свет одной из линейных поляризаций), можно получить неполяризованый свет. Как показали опыты, проделанные в начале века, ряд растворов имеющих биологическое происхождение веществ (сахар, никотин) обладают удивительной способностью поворачивать плоскость поляризации света (например, вправо). Повод для удивления состоял в том, что все известные законы физики были инвариантны относительно операции инверсии, меняющей местами “право” и “лево”, и было совершенно непонятно, что “заставляет” свет поворачивать плоскость поляризации в определенном направлении. Удивление еще более возросло после того, как выяснилось, что искусственно синтезированный сахар не обладает способностью вращать плоскость поляризации. Далее оказалось, что живые организмы способны усваивать лишь половину искусственно созданного сахара, а оставшаяся часть вращает плоскость поляризации в противоположном направлении!

Перейти на страницу: 1 2

Другое по теме

Научное познание и его специфические признаки. Методы научного познания
Обыденное познание дает знания для ориентации в окружающем мире. На его основе накапливается материал для научного познания. Оно субъективно и возникает как результат научной деятельности. Наука: социальный институт (люди и отношения между ними) -специфическая познавательная деятельность (познание) специфи ...

Квантовые эффекты. Ограничения применимости теории тяготения Эйнштейна
Теория Эйнштейна — не квантовая теория. В этом отношении она подобна классической электродинамике Максвелла. Однако наиболее общие рассуждения показывают, что гравитационное поле должно подчиняться квантовым законам точно так же, как и электромагнитное поле. В противном случае возникли бы противоречия с принципом неопределённо ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru