Стационарные состояния квантово-механических систем.

,

другие ортогональные линейные комбинации дают систему из близкорасположенных друг к другу N энергетических подуровней. При увеличении числа атомов в кристалле подуровни сливаются в сплошную полосу - энергетическую зону, соответствующую непрерывному набору разрешенных значений энергии электрона. Поскольку свободная частица в пустом пространстве так же может обладать энергией из непрерывного набора, поведение электрона в идеальном бесконечном кристалле весьма сходно с поведением свободной частицы. Этим объясняется возможность существования электропроводности в твердых кристаллических телах.

Уравнение Шредингера. При описании движения микрочастиц в пространстве в качестве базисного удобно выбрать непрерывный набор состояний с определенными координатами , для каждого из которых может быть записано уравнение, аналогичное (10). Конкретный вид оператора Гамильтона для этого случая был правильно угадан Шредингером и имеет вид, аналогичный классическому выражению для механической энергии:

,

где - оператор импульса, - оператор потенциальной энергии. Наибольший практический интерес представляют вероятности обнаружить находящуюся в стационарном состоянии частицу в заданной точке пространства R. В соответствии с общими правилами квантовой механики эта вероятность дается квадратом модуля соответствующей амплитуды, называемой волновой функцией:

.

Анализ математических свойств стационарного уравнения Шредингера

показывает, что в случаях, когда область классически возможного движения частицы в пространстве ограничена, разрешенным является только дискретный набор энергетических уровней. При неограниченном движении энергетический спектр непрерывен.

В простейшем случае стационарных решений для атома водорода связанным состояниям (электрон находится вблизи ядра) соответствует набор разрешенных значений энергии, полностью совпадающий с вычисленными в рамках первой модели Бора и прекрасно согласующийся с экспериментом (рис. 20_7). В ионизованном состоянии (электрон ушел от ядра на бесконечно большое расстояние) частица может обладать любым значением энергии.

Перейти на страницу: 1 2 

Другое по теме

Большой взрыв
По современным представлениям, состояние расширяющейся Вселенной в прошлом (около 13 млрд. лет назад), когда ее средняя плотность в огромное число раз превышала нынешнюю. Периодом Большого взрыва условно называют интервал времени от 0 до нескольких сот секунд. В самом начале этого периода вещество во Вселенной приобрело кол ...

Ионометрия. Метод добавок
Интерес к методу добавок в ионометрии вызывается тем, что он играет более значительную роль, чем метод добавок в других методах анализа. Ионометрический метод добавок дает два больших преимущества. Во-первых, если колебание ионной силы в анализируемых пробах непредсказуемо, то применение распространенного метода градуи ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru