Тел: +70976539277
Email: kronos@gmail.com
Мы в:
Логическим развитием идеи о корпускулярных свойствах света (“волны могут вести себя подобно частицам”) явилось признание волновых свойств у частиц (электрон, нейтрон, протон и т.д. мало отличаются от фотонов и подобно им могут проявлять волновые свойства).Например, в случае очень близкого расположения небольших щелей в опыте Юнга с источником электронов вместо светового так же возникает интерференционная картина. Рентгеновские лучи (фотоны с очень большой энергией) при дифракции на трехмерной кристаллической структуре дают картинку, сходную с получающейся при дифракции электронов.
Рассуждения, аналогичные ранее проделанным для интерферирующих фотонов, требуют признания невозможности постановки эксперимента по выяснению через какое из двух отверстий пролетел электрон при условии сохранения интерференционной картины. В отличие от фотона, электрон (или другая элементарная частица) в принципе могут быть зарегистрированы без их обязательного поглощения (например, по рассеянному на них свету). Однако, любое взаимодействие обладающих малыми частиц с другими телами (даже со светом) неизбежно приводит к существенным изменениям состояний самих наблюдаемых частиц, что ведет к разрушению интерференционной картины (фотоны при рассеянии передают частицам импульс порядка , попытка уменьшения которого за счет уменьшения частоты освещающего излучения неизбежно приводят к потере информации о положении частицы из-за явления дифракции). Многочисленные мысленные эксперименты, подобные рассмотренному приводят к выводу о невозможности одновременного измерения координаты и импульса частиц со сколь угодно высокой наперед заданной точностью. Выражающее принципиальные ограничения на точность измерений неравенство, связывающее минимально возможные погрешности было предложено Гейзенбергом и носит название соотношения неопределенности:
.
Соотношение неопределенности Гейзенберга явилось предметом пристального внимания философии, поскольку провозглашаемый принципиальный запрет перекликался с идеями сторонников агностических учений, отрицающих возможность познания окружающего нас мира. Несмотря на то, что подавляющее большинство естествоиспытателей уверено в познаваемости мира, требовался серьезный философский анализ возникшей проблемы. По-видимому, выход состоит в признании неприменимости методов описания макроскопических объектов к объектам микромира: если объект не обладает какими-либо характеристиками, то невозможности их точного экспериментального определения вовсе не означает невозможности изучения объекта (бессмысленность попыток получить экспериментально ответ на вопрос о длине хвоста черта не означает невозможности познания мира в целом). Т.о. соотношение неопределенности является “подсказкой” природы о том, что привычный язык классической кинематики и динамики Ньютона малопригоден для описания процессов с участием объектов микромира.
Особенности квантово-механического описания. “Правила игры” квантовомеханического описания нерелятивистских макро- и микроскопических объектов не могут быть выведены, исходя из “привычных” классических законов, поскольку являются более общими и включают в себя эти классические законы, как частный случай, получаемый в виде чисто математических следствий из постулируемых принципов квантовой механики (принцип соответствия должен выполняться).
Критерием истинности формулируемых принципов, как обычно, является эксперимент и, может быть, красота и изящность теории (“эта теория достаточно безумна, что бы быть верной”). Следует ожидать, что после завершения разработки еще более общей теории (релятивистской квантовой механики), принципы нерелятивистской теории превратятся в прямые следствия новых, более фундаментальных принципов.
Непредельные углеводороды ряда ацетилена (алкины)
Алкины — алифатические непредельные углеводороды, в
молекулах которых между углеродными атомами имеется одна тройная связь.
Углеводороды ряда ацетилена являются еще более непредельными
соединениями, чем соответствующие им алкены (с тем же числом углеродных
атомов). Это видно из сравнения числа атомов водорода в ряду:
...
Программа вступительных экзаменов по биологии в 2004г. (МГУ)
На
экзамене по биологии поступающий в высшее учебное заведение должен показать:
знание
главнейших понятий, закономерностей и законов, касающихся строения, жизни и
развития растительного, животного и человеческого организмов, развития живой
природы;
знание
строения и жизни растений, животных, человека, основных ...