Термодинамические и химические потенциалы

Типы энергии системы

Каждая система обладает некоторым запасом внутренней энергии U, мерой изменения которой при обратимых процессах служит теплота Q, поглощаемая системой, и работа А, совершаемая системой над окружающей средой. Внутренняя энергия U является термодинамической характеристикой вещества в заданном состоянии.

Внутренняя энергия любой системы складывается из энергий, входящих в нее атомов и молекул. Она представляет собой сумму кинетической энергии движения частиц (атомов, молекул или ионов), потенциальной энергии межмолекулярного взаимодействия, энергии взаимодействия электронов и ядер в молекулах и энергии, отвечающей массе покоя частиц согласно уравнению Эйнштейна. Внутренняя энергия не относится к непосредственно измеряемым величинам. На опыте удается измерить только теплоту, поглощаемую или выделяемую системой, и определить работу, связанную с переходом из одного состояния системы в другое. При любых процессах совокупность величин Q – A не зависит от пути перехода, это позволило определить изменение внутренней энергии системы с помощью уравнения

dU = d Q – d A £ TdS – dU (1)

Положительным считается такое изменение энергии, которое отвечает увеличению U в системе.

В случае равновесного процесса

d A =dA = TdS – dU (2)

При S = const (равновесный адиабатный процесс)

dA = -dU и A = U1 - U2 (3)

Интегрируя при постоянной Т уравнение (2) получаем:

A = (U1 – TS1) - (U2 – TS2) (4)

Введем обозначение

F = U – TS (5)

получим (при Т = const)

A = F1 – F2 = -D F (6)

где F – функция состояния, называемая изохорно – изотермическим потенцалом или свободной энергией системы. Переписав уравнение (5) в виде

U = F + TS

Можно рассматривать внутреннюю энергия, как энергию, состоящую из двух частей – свободной энергии F и связанной энергии TS.

Изохорный потенциал системы, находящейся при постоянных объеме и температуре, стремится уменьшиться в самопроизволных процессах.

Представим элементарную работу как сумму работы расширения и других видов работы:

d A = pdV + d A¢ (7),

где d A¢ - сумма элементарных работ всех видов, кроме работы расширения.

Из уравнений (1, 7) получаем:

d A¢ £ TdS – dU – pdV (8)

Теперь можно найти A¢ , получаемую при переходе системы из одного состояния в другое. Интегрируя это уравнение в соответсвующих пределах при постоянных температуре и давлении и сгруппировав все величины, относящиеся к одному состоянию получим:

A¢ £ (U1 – TS1 + pV1) - (U2 – TS2 + pV2)

Обозначив через G выражения, стоящие в скобках правой части уравнения, которые являются функциями состояния, т. е.

G º U – TS + pV º F + pV º H – TS (9)

Для равновесных процессов A¢ будет максимально:

A¢ = G1 – G2 = - D G

G – функция состояния, определяемая уравнением (9) и называемая изобарно – изотермическим потенциалом или свободной энергией системы.

Самопроизвольные процессы всегда идут с уменьшением свободной энергии (при T = const и V = const) или соответственно ее изобарного потенциала (при T = const и р = const). Иными словами могут идти лишь те процессы, при которых система способна совершать работу.

Химический потенциал

Из I закона термодинамики известно, что поглощенная теплота Q определяется соотношением:

Q = ∆U + A,

если процесс элементарный (бесконечно малый), то можно записать:

δQ = dU + d A.

Для равновесного процесса выражение для II закона термодинамики:

dS = δQ /T или δQ = TdS.

Объединив выражения для первого и второго законов термодинамики: TdS = dU + δA, т. к. δA = pdV, получаем обощенное уравнение, которое спарведливо только для равновесных процессов

TdS = dU + pdV. (10)

Продифференцировав выражение для свободной энергии и изобарного потенциала получаем:

dF = dV – TdS – SdT

dG = dV – TdS – SdT + pdV + Vdp.

Перейти на страницу: 1 2

Другое по теме

Проект водосливной плотины
Целью данного проекта является разработка гидроузла. Гидроузел включает в себя водосливную плотину,гидроэлектростанцию, береговой водоприемник и глухую плотину. Климатические условия. Географический район строительства – Зап. Сибирь. Геологические условия. Аллювиальные отложения в русле реки представляют собой ...

Шпаргалка по школьному курсу физики
Площади l – длинна b - высота, ширина. Площадь круга: Кинематика. Равномерное движение: a = 0 V = S/t Ускоренное движение: a > 0 a = (V – V0 )/ t S = S0 + V0t ± (at2 )/2 a = (V2 – V02 )/ 2S Последовательный ряд нечетных чисел: - ую: просто: Движение ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru