Макроскопические и микроскопические состояния.

Энтропия. Механизм возникновения необратимости легко понять на примере расчета интуитивно весьма маловероятного явления: образования вакуума в одной половине комнаты вследствие случайного перемещения всех хаотически движущихся молекул в другую половину. Очевидно, что вероятность нахождения одной молекулы в выбранной половине объема равна 0,5. Если движения молекул независимы, то вероятность всем N молекулам оказаться в этой половине равна произведению вероятностей для каждой из молекул. Т.о. полный вакуум в половине комнаты возникает с вероятностью

(1) .

О том, насколько мала эта величина, можно говорить, срввнив ее с вероятностью повседневно-наблюдаемого явления - равномерного распределения газа в двух половинах комнаты. Если мысленно занумеровать все молекулы, то вероятность обнаружения всех первых N/2 молекул в одной половине объема равна

(2)

и совпадает с вероятностью найти все осавшиеся молекулы во второй половине. Полная вероятность описанного равномерного распределения, очевидно равна квадрату (2) и совпадает с (1).

Полученный “странный” результат не означает того, что в комнате легко задохнуться. Ошибка расчета состоит в том, что для дыхания человека несущественно, какие именно молекулы кислорода находятся в его половине комнаты: если какую-либо пару молекул, находящихся в разных частях объема, поменять местами, этого “никто не заметит”. Таким образом, вероятность равномероного распределения молекул между двумя половинами объема превосходит вероятность образования вакуума в одной из половин в огромное число раз, равное количеству всевозможных перестановок молекул между этими половинами.

Приведенный пример позволяет сформулировать общий механизм возникновения необратимых макроскопических процессов. Различные макроскопические состояния могут реализовываться различным числом отличающихся друг от друга микроскопических, переход между которыми не приводит к новым макро состояниям. Наиболее вероятными являются те макроскопические состояния, которым соответствует наибольшее число микроскопических. Такие состояния и являются термодинамически равновесными. Если же искусственно создать неравновесное макроскопическое состояние, реализуемое малым числом микроскопических, вероятность их повтроной реализации оказывается весьма малой, что и означает переход системы в макроскопическое состояние, соответствующее термодинамическому равновесию. Самопроизвольный выход макроскопической системы из состояния термодинамического равновесия возможен, но крайне маловероятен.

Количественной мерой вероятности реализации макроскопического состояния является его энтропия, определяемая соотношением

(3) ,

где N - число соответствующих ему микроскопических состояний. Очевидно, что в ходе необратимых процессов (т.е. при переходе к более вероятным состояниям) энтропия системы возрастает, а при обратимых переходах - сохраняется. Закон возрастания энтропии носит не строгий, а вероятностный характер. Иногда говорят, что энтропия является мерой беспорядка в системе.

Перейти на страницу: 1 2

Другое по теме

Экспериментальная проверка теории Эйнштейна
В основе теории тяготения Эйнштейна лежит принцип эквивалентности. Его проверка с возможно большей точностью является важнейшей экспериментальной задачей. Согласно принципу эквивалентности, все тела независимо от их состава и массы, все виды материи должны падать в поле тяготения с одним и тем же ускорением. Справедливость это ...

Стальной вертикальный цилиндрический резервуар емкостью 5000 м3
Нормативные документы периода разработки типового проекта «Стальной вертикальный цилиндрический резервуар емкостью 5000 м3» отражали уровень научно-технических знаний того времени и, естественно, не могли учитывать достижений науки и практики последующих лет, отраженных в строительных нормах и правилах периода возведен ...

© Copyright 2013 -2014 Все права защищены.

www.guidetechnology.ru