Тел: +70976539277
Email: kronos@gmail.com
Мы в:
Рассмотрение электромагнитного поля даже в рамках классической теории позволяет приписать ему “традиционные” для частиц характеристики: энергию и импульс. Квантованный характер обмена энергией между веществом и полем и открытые законы фотоэффекта делали весьма соблазнительной идею рассмотрения поля как совокупности частиц фотонов, рождающихся и гибнущих при излучении и поглощении света соответственно. Поскольку скорость распространения электромагнитного поля в вакууме совпадает с предельным значением с, фотон является ультрарелятивистской частицей с равной нулю массой покоя: в противном случае импульс фотона был бы бесконечно большим, и процедура загорания на пляже не доставляла бы нам ни малейшего удовольствия:
(5)
.
Релятивистское соотношение между энергией и импульсом
(6)
,
получающееся в результате скалярного умножения четырехвектора энергии-импульса (12_9) на себя, приводит к следующему выражению, связывающему импульс фотона с его частотой:
(7)
.
Наличие импульса у фотона позволило изящно и количественно правильно описать явление светового давления как простое следствие закона сохранения импульса при поглощении света веществом.
Концепция фотонов (корпускулярная модель) привела к большим трудностям при интерпретации экспериментов по интерференции и дифракции, доказывающих волновую природу света.
Корпускулярно-волновой дуализм. Весьма распространено мнение о том, что корпускулярные и волновые свойства света не могут проявляться одновременно: в опытах по интерференции свет ведет себя как волны, а при взаимодействии с веществом - как частицы. О такой “взаимоисключающей двойственности” принято говорить как о корпускулярно - волновом дуализме.
Отношение к этой проблеме сильно зависит от того, какой смысл вкладывается в понятия “волна” и “частица”. Например, если называть волной любой объект, описываемый гармонической функцией типа (16_3), а частицей - соответственно объект, описываемый дельта-функцией, то всякий объект природы, допускающий описание при помощи математических функций может рассматриваться либо как совокупность волн, либо -частиц в зависимости от желания. Поскольку помимо указанных существует множество других ортогональных наборы функций, с точки зрения математики последовательный подход требует признания не двойственности, а бесконечной множественности природы как микроскопических, так и макроскопических объектов.
Традиционная же для физике проблема состоит в попытке разрешить дилемму о том, идентично ли поведение света потоку подчиняющихся механике Ньютона “небольших шариков” - корпускул или оно подобно поведению волн на поверхности воды или звуковых колебаний в воздухе. При этом вопросы о том, почему свет обязан быть похожим на привычные нам объекты макромира и почему привычные для нас законы поведения классических частиц и волн не требуют объяснения не задаются.
Что же касается возможности опыта, в котором одновременно проявлялись бы и волновые и корпускулярные свойства света, то для его осуществления достаточно в классическом опыте Юнга уменьшить интенсивность источника света (например, до уровня излучения одного фотона в минуту), а для регистрации интерференционной картины использовать пластинку с фотоэмульсией (химическим соединением, зерна которого разрушаются при воздействии света). При такой постановке опыта видно, что каждый фотон на пластинке оставляет зачерненную точку, то есть подобно частице локализован в пространстве. Однако положение засвеченных точек на фотопластинке совершенно не соответствует классическим представлениям о поведении ньютоновских частиц: по мере накопления их количества на пластинке появляется характерная для классических волн интерференционная картина.
Солнечно-земная физика
На
страницах научной литературы в последнее время часто встречается термин
солнечно-земная физика, смысл которого каждый специалист понимает по-своему.
Систематически используют этот термин специалисты, занимающиеся физикой
Солнца, геомагнитного поля, верхней атмосферы. Все больший интерес к
солнечно-земной физике пр ...
Анализ эквивалентной цепи взрыво-магнитного генератора частоты
Взрывомагнитный
генератор частоты (ВМГЧ) состоит из спирального магнетокумулятивного генератора,
гальванически связанного с конденсатором небольшой ёмкости. Для описания
функционирования этого прибора используют концепцию эквивалентной схемы (ЭС).
При этом, эмпирически подбирая параметры эквивалентной схемы ВМГЧ, можно
...