Тел: +70976539277
Email: kronos@gmail.com
Мы в:
Кислород (лат. Oxygenium) – химический элемент VI группы периодической системы Менделеева: атомный номер 8, относительная атомная масса 15,9994.
Кислород был одновременно получен шведским ученым К. Шееле в 1773 г. и английским химиком Дж. Пристли в 1774 г. В 1777 г. А. Лавузье объяснил процессы дыхания и горения и дал название кислороду oxygenium – рождающий кислоты.
При нормальных условиях кислород представляет собой бесцветный газ, не имеющий запаха, состоит из двухатомных молекул, имеет несколько бóльшую плотность, чем воздух, и плохо растворим в воде.
Кислород имеет высокую электроотрицательность (3.5 по шкале электроотрицательностей) и является сильным окислителем. Он способен соединяться со многими элементами, образуя оксиды. Реакции образования оксидов очень экзотермичны, и это во многих случаях может приводить к возгоранию соединяющегося с кислородом элемента либо образующегося соединения [4].
Кислород – наиболее распространенный элемент твердой земной коры, гидросферы, живых организмов. Его кларк в литосфере – 47 %, еще выше кларк в гидросфере – 82 % и живом веществе – 70 %. Известно свыше 1400 кислородосодержащих минералов, в которых его спутниками являются десятки элементов периодической системы. Кислород – циклический элемент классификации В. И. Вернадского, он участвует в многочисленных круговоротах различных масштабов – от небольших, в пределах конкретного ландшафта, до грандиозных, связывающих биосферу с очагами магматизма. [2]
На долю кислорода приходится приблизительно половина всей массы земной коры, 89 % массы мирового океана. В атмосфере кислород составляет 23 % массы и 21 % объема [4].
На земной поверхности зеленые растения в ходе фотосинтеза разлагают воду и выделяют свободный кислород (О2) в атмосферу. Как отмечал Вернадский, свободный кислород – самый могущественный деятель из всех известных химических тел земной коры. Поэтому в большинстве систем биосферы, например в почвах, грунтовых, речных и морских водах, кислород выступает настоящим геохимическим диктатором, определяет геохимическое своеобразие системы, развитие в ней окислительных реакций. За миллиарды лет геологической истории растения сделали атмосферу нашей планеты кислородной, воздух, которым мы дышим, сделан жизнью [1].
Количество реакций окисления, расходующих свободный кислород, огромно. В биосфере они в основном имеют биохимическую природу, т. е. Осуществляются бактериями, хотя известно чисто химическое окисление. В почвах, илах, реках, морях и океанах, горизонтах подземных вод – везде, где имеются органические вещества и вода, развивается деятельность микроорганизмов, окисляющих органические соединения.
Ранее считалось, что свободный кислород в земную кору проникает только до уровня грунтовых вод. Однако гидрохимики сделали важное открытие – в горах, особенно в аридных зонах, свободный кислород проникает с подземными водами на глубины более 1 км. [2].
В большинстве природных вод, содержащих свободный кислород – сильный окислитель, существуют органические соединения – сильные восстановители. Поэтому все геохимические системы со свободным кислородом неравновесны и богаты свободной энергией. Неравновесность выражена тем резче, чем больше в системе живого вещества.
Везде в биосфере, где воды, не содержащие свободный кислород (с восстановительной средой), встречают этот газ, возникает кислородный геохимический барьер, на котором концентрируются Fe, Mn, S и другие элементы с образованием руд этих элементов.
Ранее господствовало заблуждение, что по мере углубления в толщу земной коры среда становится более восстановительной, однако это не полностью отвечает действительности. На земной поверхности, в ландшафте, может наблюдаться как резко окислительные, так и резко восстановительные условия.
Окислительно-восстановительная зональность наблюдается в озерах – в верхней зоне развивается фотосинтез и наблюдается насыщение и перенасыщение кислородом. Но в глубоких частях озера, в илах происходит только разложение органических веществ.
Ниже биосферы, в зоне метаморфизма, степень восстановленности среды часто уменьшается, как и в магматических очагах.
Наиболее восстановительные условия в биосфере возникают на участках энергичного разложения органических веществ, а не на максимальных глубинах. Такие участки характерны и для земной поверхности, и для водоносных горизонтов.
В целом в биосфере осуществляется более резкая, чем в нижних частях земной коры и мантии, дифференциация кислорода. Об этом говорят кларки концентрации кислорода в разных системах [2]:
Ультраосновные породы |
0,8 |
Каменные метеориты |
0,7 |
Земная кора |
1,0 |
Извержение породы: | |
основные |
0,8 |
средние |
0,8 |
кислые |
1,03 |
Биосфера и ее производные: | |
глины и сланцы |
1,1 |
гидросфера |
1,8 |
живое вещество |
1,5 |
каменный уголь |
0,3 |
нефть |
0,08 |
антрацит |
0,02 |
Расчеты при проектировании висячего авто-пешеходного моста в г.Ярославле
Presented paper deals with Designed and Calculation aspects of
Methods of suspension erection of central Span of 3 span foot/auto suspension
Bridge Structure across River Kotorosl in Yaroslavl. Methology presented in
this paper allow to Reach pre-defined degree of accuracy in Final Bridge
Geometry at the end of the Cons ...
Некоторые выводы теории тяготения Эйнштейна
Ряд
выводов теории Эйнштейна качественно отличается от выводов ньютоновской теории тяготения Важнейшие из них связаны с возникновением
«черных дыр», сингулярностей пространства-времени
(мест, где формально, согласно теории, обрывается существование частиц и полей
в обычной, известной нам форме) и существованием гравитационных в ...